Abstract In this work, we combined a powerful radiation grafting method that yields high-density functional groups containing rich sulfur and nitrogen with microcrystalline cellulose microspheres (MCCs) to achieve a novel… Click to show full abstract
Abstract In this work, we combined a powerful radiation grafting method that yields high-density functional groups containing rich sulfur and nitrogen with microcrystalline cellulose microspheres (MCCs) to achieve a novel functionalized cellulose microsphere (NS-CM) as a Au(III) adsorbent. It was found that high-density functional groups containing around 37.4 wt% sulfur and nitrogen in total on the NS-CM exhibited a maximum capacity of 4656.9 mg/g in batch experiments, which is the highest level recorded in comparison with other reported literatures. Meanwhile, the column adsorption capacity of NS-CM reached 3110 g/L in simulated acidic waste effluent, which is a significant breakthrough in Au(III) uptake. Finally, the NS-CM could selectively capture trace Au(III) from the actual gold slag leaching solution with an excellent adsorption efficiency of 95.17%. A well-designed adsorbent (NS-CM) with ultrahigh adsorption ability and excellent selectivity provided a very efficient, sustainable, and industrially feasible way for Au(III) to be recovered in leaching solution of gold slag, electronic waste, and other prospective sources.
               
Click one of the above tabs to view related content.