LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis and short-term predictions of non-technical loss of electric power based on mixed effects models

Photo from wikipedia

Abstract In this paper we estimate, analyze and predict short-term non-technical loss (NTL) of electric power of Brazilian energy service companies based on different assumptions for the covariance structure of… Click to show full abstract

Abstract In this paper we estimate, analyze and predict short-term non-technical loss (NTL) of electric power of Brazilian energy service companies based on different assumptions for the covariance structure of the errors and controlling for socio-economic confounding variables. Although the correlation among repeated responses is not usually of intrinsic interest, it is an important aspect of the data that must properly be accounted for to produce valid inferences in longitudinal or panel data analysis. In the extended linear mixed effects model, the covariance matrix of the response vector is comprised by two subcomponents, a random effect component that can represent between group variation and a intraclass or within group component. So, in order to adequately treat the longitudinal character of NTL data, we use the decomposition of these variance components to evaluate different architectures to the within group errors. Using data of 59 Brazilian distributing utilities from 2004 to 2012, we fit a conditionally independent errors model and three other models with autoregressive-moving average parametrization to the intraclass disturbances. Finally, we compare models using the MAD and MAPE metrics in the prediction of NTL for the year of 2013. The findings suggest that the approach can be satisfactorily implemented in future statistical analysis of NTL.

Keywords: mixed effects; non technical; electric power; technical loss; short term

Journal Title: Socio-economic Planning Sciences
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.