LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamics shakedown analysis of slab track substructures with reference to critical speed

Abstract In this paper, the long-term response of a slab track substructure to moving train loads as well as its relation with critical speed is evaluated using lower-bound dynamic shakedown… Click to show full abstract

Abstract In this paper, the long-term response of a slab track substructure to moving train loads as well as its relation with critical speed is evaluated using lower-bound dynamic shakedown analysis. The train loads are converted into a distributed moving load on the substructure surface using a simplified track analysis. The Mohr-Coulomb criterion is adopted for substructure materials. By conceiving a self-equilibrated and time-independent critical residual stress field and calculating velocity-dependent fictitious elastic stress fields, dynamic shakedown solutions for the substructures are obtained. The shakedown limits for homogenous and layered substructures are examined considering various train speeds, elastic moduli, friction angles and layer thicknesses. Meanwhile, the critical speeds of the substructures are investigated, which are consistent with literatures. It is found the friction angle will affect the shakedown limit but not the critical speed. The change of the shakedown limit from the static solution relies on the ratio of layer elastic moduli and the ratio of train speed to critical speed rather than their absolute values. For a typical three-layered substructure, there exists an optimum subgrade layer thickness, as any further increase in the thickness alone will not improve the shakedown limit. The safe train load can be expressed as a function of static shakedown limit and velocity factor.

Keywords: speed; slab track; shakedown analysis; critical speed

Journal Title: Soil Dynamics and Earthquake Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.