Abstract This paper presents on-going challenges in the present paradigm shift of earthquake-induced ground motion prediction from empirical to physics-based simulation methods. The 2010–2011 Canterbury and 2016 Kaikoura, New Zealand… Click to show full abstract
Abstract This paper presents on-going challenges in the present paradigm shift of earthquake-induced ground motion prediction from empirical to physics-based simulation methods. The 2010–2011 Canterbury and 2016 Kaikoura, New Zealand earthquakes are used to illustrate the predictive potential of the different methods. On-going efforts in simulation validation and theoretical developments are then presented, as well as the demands associated with the need for explicit consideration of modelling uncertainties. Finally, discussion is also given to the tools and databases needed for the efficient utilisation of simulated ground motions both in specific engineering projects as well as for near-real-time impact assessment.
               
Click one of the above tabs to view related content.