LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time domain stochastic finite element simulation towards probabilistic seismic soil-structure interaction analysis

Photo by jontyson from unsplash

Abstract This paper exploits the recent advances in the field of stochastic finite elements in time-domain simulation of the seismic behavior of soil-foundation-structure systems in three-dimension considering the soil parameters… Click to show full abstract

Abstract This paper exploits the recent advances in the field of stochastic finite elements in time-domain simulation of the seismic behavior of soil-foundation-structure systems in three-dimension considering the soil parameters to be heterogeneous, anisotropic, non-Gaussian random fields, structural material parameters to be non-Gaussian random variables, and earthquake motion to be a non-stationary random process. Both the formulation and its implementation are discussed. Scalable numerical schemes for distributed memory parallel computing of hundreds of millions stochastic degrees of freedom, that may arise for any typical uncertain soil-structure interaction (SSI) problem, are presented. Although the presented approach allows for treatment of material nonlinearity, behaviors of only linear systems are illustrated in this study. Through comparisons of the stochastic SSI analysis results with that of the deterministic SSI, deterministic rigid base structural response history, and 1-D deterministic geotechnical site response analyses, and through an extensive parametric study by varying the input uncertainty parameters, the shortcomings of the conventional deterministic approaches are highlighted.

Keywords: soil; soil structure; time domain; structure; structure interaction; stochastic finite

Journal Title: Soil Dynamics and Earthquake Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.