LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles

Photo from archive.org

Abstract Pure and Ni (0.5–2.0%) doped ZnS nanoparticles were prepared by an inexpensive solid state reaction method. The structural, functional, optical, morphological and chemical compositions of the products were characterized… Click to show full abstract

Abstract Pure and Ni (0.5–2.0%) doped ZnS nanoparticles were prepared by an inexpensive solid state reaction method. The structural, functional, optical, morphological and chemical compositions of the products were characterized by XRD, FT-IR, UV–Vis, PL, SEM with EDX and TEM analyses. The X-ray diffraction results confirmed that the polycrystalline nature with cubic crystal structure of the nanoparticles. Also, using these data, crystallite size, dislocation density, micro-strain, stacking fault and lattice constant were calculated. The functional group associated with the vibration of a molecule was investigated by FTIR spectroscopy. The optical band gap was increased from 3.58 to 3.97 eV with increasing Ni dopant concentrations. The SEM and TEM images depict the nanosized particles with spherical shape morphology. The elemental composition of Ni-ZnS nanoparticles was examined by EDX analysis. The PL emission spectra show an intensity quenching upon Ni doping and exhibit green emission in the visible region. The photocatalytic activity results indicated that the Ni doping enhanced the photocatalytic activity of ZnS. Thus, Ni-ZnS could be effectively used as photocatalyst for degradation of environmental pollutant Methylene Blue dye.

Keywords: zns nanoparticles; synthesis enhanced; zns; doped zns; photocatalytic property; enhanced photocatalytic

Journal Title: Solar Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.