LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and verification of photovoltaic MPPT algorithm as an automotive-based embedded software

Photo by edhoradic from unsplash

Abstract This paper presents the design and verification process of the Maximum Power Point Tracking Controller in accordance with the automotive development process standards, which could be used in Photovoltaic… Click to show full abstract

Abstract This paper presents the design and verification process of the Maximum Power Point Tracking Controller in accordance with the automotive development process standards, which could be used in Photovoltaic charging stations or in on-board chargers of electric vehicles. Considered as an automotive embedded software, the designed MPPT controller follows a sequence of three tests of the Model-based design MBD Approach to be verified and validated. The ultimate aim is to present a road map to design, test and validate an embedded software of the MPPT algorithm in vehicle based software. We design a modified Perturb and Observe P&O algorithm, then we generate optimized C code for a 32 bit ARM cortex microcontroller. Next, the algorithm is simulated through Model-in-the loop MIL, Software-in-the loop SIL, and finally co-simulated through Processor-in-the-loop PIL technique in the low cost STM32F429 discovery development board. During all the different tests, the designed embedded software shows a high accordance with MPPT requirement and high performances.

Keywords: design verification; embedded software; software; mppt algorithm

Journal Title: Solar Energy
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.