LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical properties of a random inverted pyramid textured silicon surface studied by the ray tracing method

Photo from wikipedia

Abstract The random inverted pyramid texture has been extensively studied experimentally in high-efficiency monocrystalline silicon solar cells due to its superior optical properties. In this paper, a random inverted pyramid… Click to show full abstract

Abstract The random inverted pyramid texture has been extensively studied experimentally in high-efficiency monocrystalline silicon solar cells due to its superior optical properties. In this paper, a random inverted pyramid structure model was established, and the optical performance was studied by the ray tracing method. It has five common light paths and can achieve lower reflectance than random upright pyramids. To further analyze the optical properties of random inverted pyramids, a simplified random inverted pyramid model, which consists of two overlapping inverted pyramids, was studied and analyzed in detail. The proportions of the light path related to different overlapping regions, and the reflectance ranging from 10.11% to 10.64%, can be obtained, which is lower than the reflectivity of random upright pyramids. We believe that the random inverted pyramid texture can have a wide range of applications in high-efficiency monocrystalline silicon solar cells.

Keywords: studied ray; inverted pyramid; ray tracing; random inverted; optical properties

Journal Title: Solar Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.