LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of ZnO-SnO2 oxide systems produced by ultrasonic spray pyrolysis

Photo from archive.org

Abstract In this work, ZnO, SnO2 and ZnO:Sn films were produced by ultrasonic spray pyrolysis technique. Sn element was incorporated into ZnO precursor at volume percentages of 20, 50 and… Click to show full abstract

Abstract In this work, ZnO, SnO2 and ZnO:Sn films were produced by ultrasonic spray pyrolysis technique. Sn element was incorporated into ZnO precursor at volume percentages of 20, 50 and 80% to produce ZnO-SnO2 systems as an alternative to popular indium tin oxide used in photovoltaic solar cells. Elemental analyzes showed that stoichiometric deviations occurred because of the excess Zn and Sn in addition to the lack of oxygen. From X-ray diffraction patterns, the optimum incorporation rates to produce ZnO-SnO2 systems were determined as 50 and 80%. The transmittance spectra showed that ZnO-SnO2 films have highly transparent in the visible region and transmittances at 600 nm reached 86%. Thicknesses and optical constants were determined by spectroscopic ellipsometer. Photoluminescence spectra showed that natural point defects occur as deep traps. Sn incorporation rate, which creates reduction effect on surface roughness values, was determined as 80% by atomic force microscopy. The electrical resistivities of ZnO-SnO2 films were measured as 1.41 × 10−2 and 5.15 × 10−3 Ω cm by four-probe technique. This study shows that ZnO-SnO2 oxide systems produced by incorporating Sn at 50% and especially 80% may be potential candidates to indium tin oxide in solar cell applications due to their high optical transmittances and low electrical resistivities.

Keywords: zno sno2; sno2 oxide; spray pyrolysis; zno; produced ultrasonic; ultrasonic spray

Journal Title: Solar Energy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.