LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of self-assembly on the photovoltaic properties of a small molecule oligothiophene donor

Photo from wikipedia

Abstract The positive impact of self-assembly on the photovoltaic properties of a donor-π-acceptor oligothiophene molecule coded as CP3, which contains a barbituric acid as a terminal acceptor unit and triphenylamine… Click to show full abstract

Abstract The positive impact of self-assembly on the photovoltaic properties of a donor-π-acceptor oligothiophene molecule coded as CP3, which contains a barbituric acid as a terminal acceptor unit and triphenylamine as donor, enabling hydrogen-bonded spherulites to assemble in its films is described. The hydrogen-bonded supramolecular array of barbiturated-oligothiophene molecules were directly visualized by scanning electron microscopy. Bulk-heterojunction solar cells comprising CP3 and the fullerene PC61BM show a power conversion efficiency of 6.31%, which is markedly higher than a structural analogue CP4, which comprises a N-ethylrhodanine terminal acceptor unit incapable of participating in the same degree of self-assembly, supporting the impact of self-assembly in BHJ devices.

Keywords: impact self; self assembly; assembly photovoltaic; self; photovoltaic properties

Journal Title: Solar Energy
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.