LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective impurity gettering by phosphorus- and boron-diffused polysilicon passivating contacts for silicon solar cells

Photo from wikipedia

Abstract This paper presents direct experimental evidence for the strong impurity gettering effects associated with the formation of both phosphorus and boron doped polysilicon/oxide passivating contacts for silicon solar cells,… Click to show full abstract

Abstract This paper presents direct experimental evidence for the strong impurity gettering effects associated with the formation of both phosphorus and boron doped polysilicon/oxide passivating contacts for silicon solar cells, doped via thermal diffusion from POCl3 or BBr3 sources. Ion-implanted iron is used as a marker to quantify the gettering effectiveness via carrier lifetime measurements. The process conditions for fabricating optimum polysilicon passivating contacts are found to remove more than 99.9% of the iron from the silicon wafer bulk. The gettering effects of POCl3 and BBr3 diffused polysilicon/oxide contacts mainly arise from the dopant diffusions, as opposed to gettering by structural defects in the polysilicon films. The thin oxide interlayer hinders the gettering effectiveness at low diffusion temperatures, although its blocking effect becomes small at the moderate temperatures used to fabricate optimum polysilicon contacts. The gettering effectiveness increases with increasing diffusion temperature. The gettering of iron from the silicon wafer bulk to the surface layers is found to have a negligible impact on their ability to suppress recombination at the interface with the silicon wafer. Therefore, the formation of polysilicon/oxide passivating contacts, via thermal diffusion from POCl3 and BBr3 sources, not only achieves high quality surface and contact passivation but also has the net additional benefit of achieving very effective gettering of unwanted impurities in the silicon wafer bulk.

Keywords: phosphorus boron; passivating contacts; polysilicon; impurity gettering; contacts silicon; solar cells

Journal Title: Solar Energy Materials and Solar Cells
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.