Abstract In this work we report the Na incorporation from Na-doped Mo (Mo-Na) back contact for kesterite Cu2ZnSnS4 solar cells on flexible stainless steel substrates. It is demonstrated that Na… Click to show full abstract
Abstract In this work we report the Na incorporation from Na-doped Mo (Mo-Na) back contact for kesterite Cu2ZnSnS4 solar cells on flexible stainless steel substrates. It is demonstrated that Na can be effectively incorporated into CZTS by inserting Mo-Na layer at back contact. Direct contact of CZTS and Mo-Na layer leads to poor homogeneity and adhesion. The thickness of MoS2 formed at the back contact depends on the presence of Na and whether Mo contacts with CZTS directly. Back contact configuration with a Mo capping layer on Mo-Na layer is found to be helpful to maintain the advantages of Mo back contact and control the thickness of MoS2 interface. As a result, CZTS device fabricated on this configuration yields higher conversion efficiency of 6.2%. However, this efficiency is still far lower than that on traditional soda lime glass substrate which shows efficiency over 8%. The loss mechanism of device fabricated on stainless steel is investigated and analyzed according to the device performance and electrical parameters.
               
Click one of the above tabs to view related content.