Abstract Ni(OH)2/TiO2 nanorod composite porous film with a novel structure and remarkable electrochromic (EC) behavior was prepared on a fluorine doped tin oxide (F:SnO2; FTO) coated glass substrate by hydrothermal… Click to show full abstract
Abstract Ni(OH)2/TiO2 nanorod composite porous film with a novel structure and remarkable electrochromic (EC) behavior was prepared on a fluorine doped tin oxide (F:SnO2; FTO) coated glass substrate by hydrothermal and solvothermal techniques. A pure Ni(OH)2 porous film was also prepared on another FTO substrate by the solvothermal technique for comparison. The growth process of Ni(OH)2 on the surface of TiO2 nanorod layer was investigated carefully. The component, morphology and microstructure of the films, as well as their EC performances including transmittance, cyclic voltammetry (CV), cycle life and response time were characterized. Compared with those of the pure Ni(OH)2 film, the EC performances of Ni(OH)2/TiO2 composite film have exhibited obvious enhancement owing to the good interface bonding, Ni(OH)2 porous structure, TiO2 nanorod layer and interpenetrating structure. Furthermore, it is noteworthy that the transmittance contrast in near infrared light area was distinctly improved, and even exceeded 95% after the 100th cycle, promising the Ni(OH)2/TiO2 nanorod composite porous film a potential EC application in near infrared light area in the future.
               
Click one of the above tabs to view related content.