LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the effect of cold-rolling on the corrosion of SS316L alloy in a molten carbonate salt

Photo by pueblovista from unsplash

Interactions between stainless steel 316L and eutectic Li2CO3 + K2CO3 + Na2CO3 at 450 °C were investigated for thermal energy storage. Scanning Electron Microscopy (SEM), Electron Back-Scatter Diffraction (EBSD), Scanning Kelvin… Click to show full abstract

Interactions between stainless steel 316L and eutectic Li2CO3 + K2CO3 + Na2CO3 at 450 °C were investigated for thermal energy storage. Scanning Electron Microscopy (SEM), Electron Back-Scatter Diffraction (EBSD), Scanning Kelvin Probe Force Microscopy (SKPFM), X-ray Photoelectron Spectroscopy (XPS), neutron diffraction pattern, material loss, micro-hardness, polarization and impedance measurements were used to compare the alloy's response in unrolled (0%) condition versus 20% and 30% cold-rolled conditions. Cold-rolling increased the number of grains, grain boundaries and density of dislocations. Initially, faster corrosion accompanied by more areas of localized attack was confirmed by Volta potential measurements. However, recovery and the formation of a surface film were found to decelerate corrosion for longer times. Cold-rolling-induced dislocations were found to facilitate carbon diffusion and subsequently carburize the material leading to increased corrosion resistance. Consequently, the overall long-time corrosion rate was not noticeably affected by cold-rolling.

Keywords: cold rolling; microscopy; corrosion ss316l; rolling corrosion; corrosion; effect cold

Journal Title: Solar Energy Materials and Solar Cells
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.