LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization

Photo from wikipedia

Abstract In this paper, we investigated the effect of Zn1-yMgyO/ZnO1-xSx double buffer layers on the antimony selenide (Sb2Se3) solar cells performance. Our results show that the magnesium and sulfur concentrations… Click to show full abstract

Abstract In this paper, we investigated the effect of Zn1-yMgyO/ZnO1-xSx double buffer layers on the antimony selenide (Sb2Se3) solar cells performance. Our results show that the magnesium and sulfur concentrations in proposed double buffer layers have a significant effect on the band alignment optimization at the junctions. The flexibility with Zn1-yMgyO/ZnO1-xSx double buffer layers ranging from 0 to 25% magnesium and 10%–70% sulfur allows an optimal conduction band offset (CBO) for Sb2Se3 solar cells. An improved open-circuit voltage (Voc) was observed in the Sb2Se3 solar cell with Zn0.93Mg0.07O/ZnO0.4S0.6 proposed double buffer layers due to appropriate CBO values at the junction interfaces. The short-circuit current density (Jsc) values increased as the sulfur concentration in the ZnO1-xSx buffer layer increased from 0 to 0.7 (x value), which could be related to the increase in the optical band gap of the ZnO1-xSx layer. The results demonstrated that under small positive offset conditions (spike-like), the carrier recombination rate at the interface is reduced, and consequently, the Sb2Se3 solar cell performance is improved. A Sb2Se3 solar cell with the optimum CBO amount (+0.3 eV) represented a conversion efficiency of 15.46%, which exhibited a 68% enhancement in comparison to the traditional CdS/Sb2Se3 solar cell.

Keywords: sb2se3 solar; zno1 xsx; double buffer; solar cells

Journal Title: Solar Energy Materials and Solar Cells
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.