LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strain-mediated stability and electronic properties of WS2, Janus WSSe and WSe2 monolayers

Photo from wikipedia

Abstract Monolayers of transition metal dichalcogenides (TMDs) have been proposed as the next generation electronic materials for nanoscale devices. We evaluated the thermodynamic stability of WS2, Janus WSSe and WSe2… Click to show full abstract

Abstract Monolayers of transition metal dichalcogenides (TMDs) have been proposed as the next generation electronic materials for nanoscale devices. We evaluated the thermodynamic stability of WS2, Janus WSSe and WSe2 monolayers under biaxial tensile and compressive strain using density functional approach. The phonon band structures of unstrained WS2, WSSe and WSe2 monolayers confirm their thermodynamic stability. The stability of these monolayers is investigated under strain and phonon softening is observed for acoustic and optical mode upto 8% tensile strain. The bond length reduction under compressive strain resulted in out of plane deformation, leading the instability of monolayers under compressive strain. The bond length W-S(Se) and bond angle W-S(Se)-W exhibit significant contribution in coupling strength between transition metal d-orbitals and chalcogen p-orbitals that mediated the electronic properties. The spin orbit coupling showed strong effect on splitting of the valence band for unstrained monolayers. The spin splitting in valence band increases with increasing the tensile strain and decreases with increasing the compressive strain. The effective masses and mobility values are 0.57me, 0.54me, 0.47me; and 0.059, 0.062, 0.072 m2V−1s−1 for unstrained WS2, WSSe and WSe2 monolayers, respectively. The tungsten dx2-y2 orbitals are mainly contributing to the conduction and valence band electronic states in compressive strained monolayers. In contrast under tensile strain tungsten dz2 orbitals contribute to conduction and valence band electronic states, causing the direct to indirect band gap transition in these monolayers. We observed that the impact of tensile strain is more sensitive as compared to that of compressive strain.

Keywords: strain; stability; wse2 monolayers; wsse wse2

Journal Title: Superlattices and Microstructures
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.