LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Disappearance of the metal-insulator transition in iridate pyrochlores on approaching the ideal R 2 Ir 2 O 7 stoichiometry

Photo from wikipedia

Abstract Recently, rare earth iridates, R2Ir2O7, with the pyrochlore structure have been intensively investigated due to their promise as either topological Mott insulators or Weyl semimetals. Single crystals of such… Click to show full abstract

Abstract Recently, rare earth iridates, R2Ir2O7, with the pyrochlore structure have been intensively investigated due to their promise as either topological Mott insulators or Weyl semimetals. Single crystals of such pyrochlores with R = Nd, Sm, Eu, and Dy were prepared hydrothermally in sealed gold tubes at 975 K and show significantly higher electrical resistivities than previously reported for either crystals or polycrystalline samples. Furthermore, none of the present crystals exhibit the metal-insulator transition found for some samples of these phases. Lower resistivities are ascribed to lack of control of x and y in R2-xIr2O7-y in other more commonly used synthesis methods, yielding uncertainty in the Ir oxidation state. We also report resistivity of R2Ru2O7 crystals for R = Yb, Gd, Eu, and Nd, prepared in the same manner. These results suggest that the observed charge transport in hydrothermally grown iridate crystals is that of essentially stoichiometric phases and is consistent a with the existence of Weyl nodes.

Keywords: insulator transition; iridate; metal insulator; disappearance metal

Journal Title: Solid State Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.