LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Singlet superconductivity enhanced by charge order in nested twisted bilayer graphene Fermi surfaces

Photo from wikipedia

Abstract Using the continuum model for low energy non-interacting electronic structure of moire van der Waals heterostructures developed by Bistritzer and MacDonald [1], we study the competition between spin, charge,… Click to show full abstract

Abstract Using the continuum model for low energy non-interacting electronic structure of moire van der Waals heterostructures developed by Bistritzer and MacDonald [1], we study the competition between spin, charge, and superconducting order in twisted bilayer graphene. Surprisingly, we find that for a range of small angles inclusive of the so-called magic angle, this model features robust Fermi pockets that preclude any Mott insulating phase at weak coupling. However, a Fermi surface reconstruction at θ ≳ 1.2° gives emergent van Hove singularities without any Fermi pockets. Using a hot-spot model for Fermi surface patches around these emergent saddle points, we develop a random-phase approximation from which we obtain a phase diagram very similar to that obtained recently by Isobe, Yuan, and Fu using the parquet renormalization group [2] but with additional insights. For example, our model shows strong nesting around time-reversal symmetric points at a moderate doping of ∼2 × 1011 cm−2 away from the van Hove singularity. When this nesting dominates, we predict that charge-order enhances singlet superconductivity, while spin-order suppresses superconductivity. Our theory also provides additional possibilities for the case of unnested Fermi surfaces.

Keywords: charge order; bilayer graphene; order; charge; twisted bilayer; superconductivity

Journal Title: Solid State Communications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.