LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An innovative large scale integration of silicon nanowire-based field effect transistors

Photo from wikipedia

Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge… Click to show full abstract

Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

Keywords: effect transistors; field effect; integration; silicon nanowire

Journal Title: Solid-state Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.