Abstract GaN gate-all-around (GAA) vertical nanowire MOSFET (VNWMOSFET) with channel length of 300 nm and diameter of 120 nm, the narrowest GaN-based vertical nanowire transistor ever achieved from the top-down approach, was… Click to show full abstract
Abstract GaN gate-all-around (GAA) vertical nanowire MOSFET (VNWMOSFET) with channel length of 300 nm and diameter of 120 nm, the narrowest GaN-based vertical nanowire transistor ever achieved from the top-down approach, was fabricated by utilizing anisotropic side-wall wet etching in TMAH solution and photoresist etch-back process. The VNWMOSFET exhibited output characteristics with very low saturation drain voltage of less than 0.5 V, which is hardly observed from the wide bandgap-based devices. Simulation results indicated that the narrow diameter of the VNWMOSFET with relatively short channel length is responsible for the low voltage operation. The VNWMOSFET also demonstrated normally-off mode with threshold voltage (VTH) of 0.7 V, extremely low leakage current of ∼10−14 A, low drain-induced barrier lowering (DIBL) of 125 mV/V, and subthreshold swing (SS) of 66–122 mV/decade. The GaN GAA VNWMOSFET with narrow channel diameter investigated in this work would be promising for new low voltage logic application.
               
Click one of the above tabs to view related content.