LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Parasitic engineering for RRAM control.

Photo from archive.org

The inevitable current overshoot which follows forming in filamentary RRAM devices is often perceived as a source of variability that should be minimized. This sentiment has led to efforts to… Click to show full abstract

The inevitable current overshoot which follows forming in filamentary RRAM devices is often perceived as a source of variability that should be minimized. This sentiment has led to efforts to curtail the overshoot by decreasing the parasitic capacitance using highly integrated 1T-1R or 1R-1R device structures. While this is readily achievable in single device test structures, it poses an intricate design constraint for memory array designs. Several papers (Degraeve et al., 2010, 2014; Fantini et al., 2013; Raghavan et al., 2013; Padovani et al., 2015) suggest that there is insufficient current to form stable filaments for small parasitic capacitances and/or low current compliance levels. Thus, the relationship between minimizing overshoot current and improved filament stability is tenuous. In this study, we utilize the forming energy-based understanding of filamentary forming to reveal that the parasitic capacitance should be optimized, rather than minimized for better filament control.

Keywords: parasitic engineering; control; rram control; rram; engineering rram

Journal Title: Solid-state electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.