LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A smart noise- and RTN-removal method for parameter extraction of CMOS aging compact models

Photo by olav_ahrens from unsplash

Abstract In modern nanometer-scale CMOS technologies, time-zero and time-dependent variability (TDV) effects, the latter coming from aging mechanisms like Bias Temperature Instability (BTI), Hot Carrier Injection (HCI) or Random Telegraph… Click to show full abstract

Abstract In modern nanometer-scale CMOS technologies, time-zero and time-dependent variability (TDV) effects, the latter coming from aging mechanisms like Bias Temperature Instability (BTI), Hot Carrier Injection (HCI) or Random Telegraph Noise (RTN), have re-emerged as a serious threat affecting the performance of analog and digital integrated circuits. Variability induced by the aging phenomena can lead circuits to a progressive malfunction or failure. In order to understand the effects of the mentioned variability sources, a precise and sound statistical characterization and modeling of these effects should be done. Typically, transistor TDV characterization entails long, and typically prohibitive, testing times, as well as huge amounts of data, which are complex to post-process. In order to face these limitations, this work presents a new method to statistically characterize the emission times and threshold voltage shifts (ΔVth) related to oxide defects in nanometer CMOS transistors during aging tests. At the same time, the aging testing methodology significantly reduces testing times by parallelizing the stress. The method identifies the Vth drops associated to oxide trap emissions during BTI and HCI aging recovery traces while removing RTN and background noise contributions, to avoid artifacts during data analysis.

Keywords: method; rtn; smart noise; noise rtn; noise; cmos

Journal Title: Solid-State Electronics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.