LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Current-voltage analytical model and multiobjective optimization of design of a short channel gate-all-around-junctionless MOSFET

Photo from wikipedia

Abstract In this paper we investigate the optimized design of a short channel gate-all-around-junctionless (GAAJ) metal-oxidesemiconductor field-effect-transistor (MOSFET), including the source-drain extensions, by means of genetic algorithm solutions applied to… Click to show full abstract

Abstract In this paper we investigate the optimized design of a short channel gate-all-around-junctionless (GAAJ) metal-oxidesemiconductor field-effect-transistor (MOSFET), including the source-drain extensions, by means of genetic algorithm solutions applied to a compact current-voltage analytical model. In fact, due to the complex device structure, it seems useful to exploit a metaheuristic-based approach to search the optimal combination of the fundamental geometrical and physical parameters that lead to an improved performance. Through this analysis, different parameter constraints are imposed for the calculation of specific objective functions. In particular, for a fixed gate-drain bias level, the task pursues the maximization of the drain current and cut-off frequency while limiting the short channel (SC) effects. The MOSFET series resistance is also evaluated in the transition region of the Id – Vgs characteristics which appear, however, strongly affected by SC effects. The accuracy of the model is verified by comparison with experimental data reported in literature.

Keywords: channel; channel gate; gate around; short channel; design short

Journal Title: Solid-State Electronics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.