LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of lithium-rich garnet-type Li 6.5 La 2.5 Ba 0.5 ZrTaO 12 for beyond intercalation chemistry-based lithium-ion batteries

Photo from wikipedia

Abstract Li-rich garnet-type Li6.5La2.5Ba0.5ZrTaO12 (LLBZT) electrolyte is characterized as a Li protecting layer for potential application in aqueous Li-O2 battery. AC impedance spectroscopy and DC electrical measurements, high temperature powder… Click to show full abstract

Abstract Li-rich garnet-type Li6.5La2.5Ba0.5ZrTaO12 (LLBZT) electrolyte is characterized as a Li protecting layer for potential application in aqueous Li-O2 battery. AC impedance spectroscopy and DC electrical measurements, high temperature powder X-ray diffraction (HT-PXRD), scanning electron microscopy (SEM) and thermogravimetic analysis (TGA) were used to investigate the electrochemical and chemical properties of Li/LLBZT and LLBZT/aqueous interfaces. Stable open circuit voltage (OCV) of ~ 3 V was observed for Li/LLBZT/0.1 M LiOH, Li/LLBZT/1 M LiOH and Li/LLBZT/1 M LiCl at 25 °C. DC galvanostatic Li plating/stripping cycle at varying current density was performed and the area specific polarization resistance (ASR) for Li+ ion charge transfer was found to be 473 Ω cm2 at 25 °C. The impedance of LLBZT was found to be improved after treating the samples with 1 M LiOH, and 1 M LiCl, and retains its crystal structure and electrochemical stability with Li; thus, Li-rich LLBZT garnet can be successfully employed in next generation beyond Li-ion batteries.

Keywords: chemistry; garnet type; rich garnet; ion batteries; garnet

Journal Title: Solid State Ionics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.