LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Insight into the dehydration behaviour of scandium-substituted barium titanate perovskites via simultaneous in situ neutron powder thermodiffractometry and thermogravimetric analysis

Photo by dawson2406 from unsplash

Hydration-dehydration cycles are critical to the mechanical performance of ceramic proton conductors. The development of in situ methods is desirable in order to study their structural response under conditions that… Click to show full abstract

Hydration-dehydration cycles are critical to the mechanical performance of ceramic proton conductors. The development of in situ methods is desirable in order to study their structural response under conditions that mimic the operating ones. Neutron powder diffraction studies combined with simultaneous thermogravimetric analysis were performed on the hydrated forms of two members of the oxygen deficient perovskite BaTi1−xScxO3−δseries, with x = 0.5 and x = 0.7. Rietveld analyses agreed with in situ gravimetric data, allowing correlation of occupancy factors of the oxygen site to hydration levels and other structural data. Dehydration is an activated process that impacts on structural parameters and the level of Sc substitution was found to control the structural response during in situ dehydration, with higher Sc content leading to significantly greater volume contraction. This was rationalised by the chemical expansion due to hydration of oxygen vacancies within the x = 0.5 sample being anomalously small. Furthermore, the behaviour of the x = 0.5 system revealed an unexpected cell expansion during the early stages of dehydration, suggesting the hydration level may influence the thermal expansion coefficient (TEC).

Keywords: thermogravimetric analysis; neutron powder; situ; hydration; dehydration

Journal Title: Solid State Ionics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.