LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating FAM-N pulses for signal enhancement in MQMAS NMR of quadrupolar nuclei.

Photo from archive.org

Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei… Click to show full abstract

Although a popular choice for obtaining high-resolution solid-state NMR spectra of quadrupolar nuclei, the inherently low sensitivity of the multiple-quantum magic-angle spinning (MQMAS) experiment has limited its application for nuclei with low receptivity or when the available sample volume is limited. A number of methods have been introduced in the literature to attempt to address this problem. Recently, we have introduced an alternative, automated approach, based on numerical simulations, for generating amplitude-modulated pulses (termed FAM-N pulses) to enhance the efficiency of the triple- to single-quantum conversion step within MQMAS. This results in efficient pulses that can be used without experimental reoptimisation, ensuring that this method is particularly suitable for challenging nuclei and systems. In this work, we investigate the applicability of FAM-N pulses to a wider variety of systems, and their robustness under more challenging experimental conditions. These include experiments performed under fast MAS, nuclei with higher spin quantum numbers, samples with multiple distinct sites, low-γ nuclei and nuclei subject to large quadrupolar interactions.

Keywords: nuclei; quadrupolar nuclei; signal enhancement; investigating fam; fam pulses; pulses signal

Journal Title: Solid state nuclear magnetic resonance
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.