Combining structural proteomics experimental data with computational methods is a powerful tool for protein structure prediction. Here, we apply a recently developed approach for de novo protein structure determination based… Click to show full abstract
Combining structural proteomics experimental data with computational methods is a powerful tool for protein structure prediction. Here, we apply a recently developed approach for de novo protein structure determination based on the incorporation of short-distance crosslinking data as constraints in discrete molecular dynamics simulations (CL-DMD), for the determination of the conformational ensemble of tau protein in solution. The predicted structures were inĀ agreement with surface modification and long-distance crosslinking data. Tau in solution was found as an ensemble of rather compact globular conformations with distinct topology, inter-residue contacts, and a number of transient secondary-structure elements. Regions important for pathological aggregation consistently were found to contain Ī² strands. The determined structures are compatible with the tau protein in solution being a molten globule at near-ground state with persistent residual structural features which we were able to capture by CL-DMD. The predicted structure may facilitate an understanding of the misfolding and oligomerization pathways of the tau protein.
               
Click one of the above tabs to view related content.