LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure of the Arabidopsis Glutamate Receptor-like Channel GLR3.2 Ligand-Binding Domain.

Photo from wikipedia

Glutamate receptor-like channels (GLRs) play important roles in numerous plant physiological processes. GLRs are homologous to ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in vertebrates. Here we determine crystal structures… Click to show full abstract

Glutamate receptor-like channels (GLRs) play important roles in numerous plant physiological processes. GLRs are homologous to ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in vertebrates. Here we determine crystal structures of Arabidopsis thaliana GLR3.2 ligand-binding domain (LBD) in complex with glycine and methionine to 1.58- and 1.75-Å resolution, respectively. Our structures show a fold similar to that of iGluRs, but with several secondary structure elements either missing or different. The closed clamshell conformation of GLR3.2 LBD suggests that both glycine and methionine act as agonists. The mutation R133A strongly increases the constitutive activity of the channel, suggesting that the LBD mutated at the residue critical for agonist binding produces a more stable closed clamshell conformation. Furthermore, our structures explain the promiscuity of GLR activation by different amino acids, confirm evolutionary conservation of structure between GLRs and iGluRs, and predict common molecular principles of their gating mechanisms driven by bilobed clamshell-like LBDs.

Keywords: glr3 ligand; glutamate receptor; ligand binding; receptor like; structure; glutamate

Journal Title: Structure
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.