LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-degradation of micro-arc oxidation/chitosan composite coating on Mg-4Li-1Ca alloy

Photo from wikipedia

Regulating degradation rate and moderate pH micro-environment for biodegradable magnesium alloys face huge challenge. The chemical and morphological characteristics of micro-arc oxidation (MAO) and chitosan (CS) composite coatings, fabricated on… Click to show full abstract

Regulating degradation rate and moderate pH micro-environment for biodegradable magnesium alloys face huge challenge. The chemical and morphological characteristics of micro-arc oxidation (MAO) and chitosan (CS) composite coatings, fabricated on Mg-4Li-1Ca alloy, are analyzed through field-emission scanning electronic microcopy, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Corrosion resistance of the samples is evaluated via hydrogen evolution, potentiodynamic polarization and electrochemical impedance spectroscopy in Hank's solution. Results indicated that the MAO and CS coating enhances the corrosion resistance and antibacterial growth activity. With increasing immersion time, the degradation of the MAO/CS coatings gives rise to a decrease in pH value and leads to a rapid increase in hydrogen evolution rate after an immersion in Hank's solution after 100 h. The MAO/CS coatings retain the solution pH at a moderate level (less than or equal to 8.25). A novel self-degradation mechanism of the MAO/CS coating on Mg-Li-Ca alloy is proposed due to the fact that MAO/CS coating is cathodic relative to the substrate.

Keywords: degradation; alloy; micro arc; spectroscopy; arc oxidation; chitosan composite

Journal Title: Surface and Coatings Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.