Abstract Insulation of an electrode for use with an electrochemical machining (ECM) was achieved through hot-dip aluminizing and microarc oxidation techniques. To form an effective insulation layer on a stainless-steel… Click to show full abstract
Abstract Insulation of an electrode for use with an electrochemical machining (ECM) was achieved through hot-dip aluminizing and microarc oxidation techniques. To form an effective insulation layer on a stainless-steel substrate and achieve high precision in ECM, an electrode was processed through microarc oxidation, and the aluminum-rich layer was converted into an aluminum oxide insulating layer. The withstand voltage of the tool was evaluated through sodium chloride electrolysis, and the surface and cross-section were observed. The ECM performance of various tools with and without aluminum oxide insulating layer was examined by drilling on a stainless-steel workpiece. A precise and robust insulation layer must be produced. Precision can be achieved by reducing the stray effects of ECM. Experimental results indicated that the optimal parameters were aluminum dipping were 4 min, microarc voltage of 475 V for 10 min with a withstand voltage of 9.3 V. Electrochemical drilling was used to examine electrodes with and without an insulation layer. Improvement of variation between entrance and exit could be 64.58 %. The differences between the entrance and exit values indicated that the electrochemical insulating layer considerably reduces stray current and improves drilling accuracy.
               
Click one of the above tabs to view related content.