LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zeolite-containing photocatalysts immobilized on aluminum support by plasma electrolytic oxidation

Photo from wikipedia

Abstract The preparation and properties of zeolite-containing oxide coatings obtained by plasma electrolytic oxidation are investigated and discussed. Pure and Ce-exchanged natural (clinoptilolite) and synthetic (13X) zeolites are immobilized on… Click to show full abstract

Abstract The preparation and properties of zeolite-containing oxide coatings obtained by plasma electrolytic oxidation are investigated and discussed. Pure and Ce-exchanged natural (clinoptilolite) and synthetic (13X) zeolites are immobilized on aluminum support from silicate-based electrolyte. Obtained coatings are characterized with respect to their morphology, phase and chemical composition, photocatalytic activity and anti-corrosion properties. It is observed that all mentioned properties of obtained coatings are dependent on processing time and type of immobilized zeolite. Coatings with Ce-exchanged zeolite show higher photocatalytic activity and more effective corrosion protection than those with pure zeolite. The highest photocatalytic activity is observed for coatings processed in a pulsed DC regime for 30 min containing Ce-exchanged 13X zeolite, followed by those containing Ce-exchanged clinoptilolite. Pronounced anti-corrosion properties feature almost all samples containing Ce-exchanged 13X zeolite.

Keywords: zeolite containing; electrolytic oxidation; immobilized aluminum; plasma electrolytic; aluminum support; zeolite

Journal Title: Surfaces and Interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.