LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Periodic domain boundary ordering in a dense molecular adlayer: Sub-saturation carbon monoxide on Pd(111)

Photo from wikipedia

Abstract We describe a previously unreported ordered phase of carbon monoxide adsorbed on the (111) facet of single crystal palladium at near-saturation coverage. The adlayer superstructure is identified from low… Click to show full abstract

Abstract We describe a previously unreported ordered phase of carbon monoxide adsorbed on the (111) facet of single crystal palladium at near-saturation coverage. The adlayer superstructure is identified from low energy electron diffraction to be c(16×2) with respect to the underlying Pd(111) surface net. The ideal coverage is determined to be 0.6875 ML, approximately 92% of the 0.75‐ML saturation coverage. Density functional theory calculations support a model for the molecular packing characterized by strips of locally-saturated (2×2) regions, with the CO bound near high-symmetry surface sites, separated by antiphase domain boundaries. The structure exists in a narrow coverage range and is prepared by heating the saturated adlayer to desorb a small fraction of the CO. Comparison of the c(16×2) domain-boundary structure with structural motifs at lower coverages suggests that between 0.6 and 0.6875 ML the adlayer order may be more strongly influenced by interadsorbate repulsion than by adsorption-site-specific interactions. The system is an example of the structural complexity that results from the compromise between adsorbate–substrate and adsorbate–adsorbate interactions.

Keywords: saturation; coverage; carbon monoxide; domain boundary

Journal Title: Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.