LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electronic states and growth modes of Zn atoms deposited on Cu(111) studied by XPS, UPS and DFT

Photo from wikipedia

Abstract Electronic states and growth modes of the Zn-deposited Cu(111) surface at 300 K were quantitatively studied using core-level and valence photoelectron spectroscopies. Both Cu 2p and Zn 2p core-levels shifted… Click to show full abstract

Abstract Electronic states and growth modes of the Zn-deposited Cu(111) surface at 300 K were quantitatively studied using core-level and valence photoelectron spectroscopies. Both Cu 2p and Zn 2p core-levels shifted to higher binding energy with increasing the amount of deposited Zn up to multilayer. The origin of the core-level shift of Cu 2p was further investigated by density functional theory calculations; the shift of the Cu 2p peak results from the change in the effective electrostatic potential (initial state effect) caused by the formation of Zn-Cu surface alloy, and the increase of coordination numbers of surface Cu atoms by Zn overlayer. The observed valence photoelectron spectra show the formation of the two atomic-layer Zn-Cu alloy up to the Zn coverage of 1 ML, followed by the formation of three-dimensional Zn islands on the alloyed surface at 300 K.

Keywords: deposited 111; surface; growth modes; states growth; electronic states

Journal Title: Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.