LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An ab initio study of the adsorption of Eu3+, Pu3+, Am3+, and Cm3+ hydroxide complexes on hematite (001) surface: Role of magnetism on adsorption

Abstract Inner-sphere hydroxide complexes of Eu3+, Pu3+, Am3+, and Cm3+ adsorbed to antiferromagnetic and ferromagnetic hematite (001) surfaces were modeled by using DFT (GGA + U) calculations in order to compare the… Click to show full abstract

Abstract Inner-sphere hydroxide complexes of Eu3+, Pu3+, Am3+, and Cm3+ adsorbed to antiferromagnetic and ferromagnetic hematite (001) surfaces were modeled by using DFT (GGA + U) calculations in order to compare the electronic properties, atomic structures, and adsorption energies between the trivalent actinide analog Eu3+ and the corresponding actinides An3+. Eu3+ forms a tridentate–binuclear surface complex on the hematite surface with an Eu–Fe distance of 3.4–3.8 A. Eu3+ is partially reduced upon adsorption, as indicated by the increase of original Eu3+ spin value from 6 to ∼7. Eu3+ adsorption on the ferromagnetic surface is energetically more favorable than on the antiferromagnetic surface, while the opposite is the case for all actinides An3+. When retaining a similar adsorption configuration (e.g., coordination number = 6), An3+ cations are adsorbed ∼0.2 A closer to the surface compared to Eu3+. Partial density of states analyses indicate ionic bonding between O ions on the hematite surface and the Eu3+/An3+ adsorbates. An increasing number of bands above the Fermi energy were found when Eu3+ and An3+ were adsorbed to the ferromagnetic surface but not on the antiferromagnetic surface, indicating the ferromagnetic substrate becomes more semiconducting upon cation adsorption. These results show that the spin configurations of the hematite (001) surface have a weak but distinct influence on the cation adsorption energy. Although the antiferromagnetic spin configuration of hematite is dominant in nature, metastable ferromagnetic domains on nanohematite grains may influence the energetics of certain cation adsorption reactions.

Keywords: pu3 am3; adsorption; hematite 001; surface; hydroxide complexes; eu3 pu3

Journal Title: Surface Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.