LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structures and thermodynamic stability of cobalt molybdenum oxide (CoMoO4-II)

Photo from wikipedia

Abstract This contribution reports density functional theory (DFT) calculations on structural and electronic properties of bulk and surfaces of cobalt molybdenum oxide CoMoO4-II; i.e., a material that enjoys a wide… Click to show full abstract

Abstract This contribution reports density functional theory (DFT) calculations on structural and electronic properties of bulk and surfaces of cobalt molybdenum oxide CoMoO4-II; i.e., a material that enjoys a wide array of chemical catalytic and optical applications. Estimated lattice constants and atomic charges for bulk CoMoO4-II reproduce limited analogous experimental measurements. Bader's charges confirm the ionic nature for metal-O bonds in bulk and surfaces of CoMoO4-II. Plotted partial density of states reveal a narrow band gap of 1.8 eV for bulk CoMoO4-II. We found that cleaving bulk of CoMoO4-II along the low-Miller indices afford twelve distinct surfaces. Upward displacement of oxygen atom becomes evident when contrasting bulk positioning of atoms with relaxed surfaces. The two mixed Mo/O- and Co/O–terminated surfaces dominate the thermodynamic stability diagram at 1 atm and 300 – 1400 K, and across a wide range of oxygen chemical potential. The presence of surface oxygen atoms in these stable surfaces is expected to facilitate the occurrence of oxygen reduction reactions as experimentally demonstrated. Likewise, the adjacent surface cations (Mo4+/Co2+) and anions (O2−) serve as Lewis-acid pairs; i.e., very potent active sites in prominent catalysis reactions.

Keywords: oxygen; oxide comoo4; molybdenum oxide; thermodynamic stability; cobalt molybdenum

Journal Title: Surface Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.