LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AFM induced self-assembling and self-healing mechanism of silicon oxide nanoparticle linear array domains templated on Moiré superlattice patterns on HOPG

Photo from wikipedia

Abstract Silicon oxide nanocluster suspensions were drop-cast on highly oriented pyrolytic graphite (HOPG) and investigated using ultra-high vacuum non-contact atomic force microscopy (AFM). The assembly of silicon oxide nanoparticle arrays… Click to show full abstract

Abstract Silicon oxide nanocluster suspensions were drop-cast on highly oriented pyrolytic graphite (HOPG) and investigated using ultra-high vacuum non-contact atomic force microscopy (AFM). The assembly of silicon oxide nanoparticle arrays was observed during consecutive scanning of the surface using AFM. The patterns and alignments of the nanoparticle arrays were consistent with templating on a Moire pattern in the top layers of the HOPG substrate. By halting and restarting the scanning process it was shown that the formation of nanoparticle arrays was driven by the AFM scan itself. Vacancy defects identified within the nanoparticle arrays were found to fill over time with nanoparticles; it was demonstrated that diffusion was preferred along the symmetry lines. This ‘self-healing’ mechanism was also shown to be driven by the AFM scanning. The recovery of defects within the arrays, and other observations of array dynamics, implied that the nanoparticle arrays had liquid-like qualities.

Keywords: oxide nanoparticle; nanoparticle arrays; nanoparticle; self healing; healing mechanism; silicon oxide

Journal Title: Surface Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.