LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semiconductor:polymer blend ratio dependent performance and stability in low voltage flexible organic field-effect transistors

Photo by jordanmcdonald from unsplash

Abstract The critical role of the mixing ratio of the semiconductor and polymer solutions on the performance and electro-mechanical stability of the flexible blend OFETs is investigated. An improvement in… Click to show full abstract

Abstract The critical role of the mixing ratio of the semiconductor and polymer solutions on the performance and electro-mechanical stability of the flexible blend OFETs is investigated. An improvement in the OFET performance was observed with increasing fraction of polymer in the solution. The maximum field-effect mobility improved from 0.08 for neat TIPS-pentacene OFETs to 0.24, 0.25 and 0.57 cm2 V−1 s−1 for semiconductor:polymer blend OFETs with mixing ratio of 3:1, 1:1 and 1:3 respectively. Under stress conditions of VDS = VGS = −5 V for 1 h, the 1:3 blend devices outperformed other categories of devices with very small drain current decay of ∼2% and 11% and small threshold voltage shift of 0.05 V and 0.27 V before and after 1.27% (Rbend = 5 mm) tensile strain application respectively. These devices also exhibited superior reliability with least performance spread over 100 continuous transfer characteristics measurement cycles before and after application of strain.

Keywords: semiconductor polymer; performance; polymer blend; stability; field effect

Journal Title: Synthetic Metals
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.