Abstract Ambipolar thin-film transistors are fabricated employing p-channel (2-decyl-7-phenylbenzo[b]benzo [4,5]thieno[2,3-d]thiophene; Ph-BTBT-C10) and n-channel (N,N'-di-n-octyl-3,4,9,10-perylenetetracarboxylic diimide; PTCDI-C8) semiconductors in bilayer and bulk heterojunction architecture. Bilayer organic semiconductors with small thickness of… Click to show full abstract
Abstract Ambipolar thin-film transistors are fabricated employing p-channel (2-decyl-7-phenylbenzo[b]benzo [4,5]thieno[2,3-d]thiophene; Ph-BTBT-C10) and n-channel (N,N'-di-n-octyl-3,4,9,10-perylenetetracarboxylic diimide; PTCDI-C8) semiconductors in bilayer and bulk heterojunction architecture. Bilayer organic semiconductors with small thickness of the first layer exhibit ambipolar device characteristics with relatively poor electrical performance. On the other hand, bulk heterojunction organic thin-film transistors (OTFTs) with optimized blend ratio exhibited higher ambipolar charge transport properties with carrier mobility as high as 0.22 and 0.038 cm2 V−1s−1 for hole and electron, respectively. Complementary-like inverters fabricated based on optimized bulk heterojunction OTFTs show high transfer gain of 96.
               
Click one of the above tabs to view related content.