LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular insights into the differences in anti‐inflammatory activities of green tea catechins on IL‐1&bgr; signaling in rheumatoid arthritis synovial fibroblasts

Photo from wikipedia

&NA; In this study, we found that catechins found in green tea (EGCG, EGC, and EC) differentially interfere with the IL‐1&bgr; signaling pathway which regulates the expression of pro‐inflammatory mediators… Click to show full abstract

&NA; In this study, we found that catechins found in green tea (EGCG, EGC, and EC) differentially interfere with the IL‐1&bgr; signaling pathway which regulates the expression of pro‐inflammatory mediators (IL‐6 and IL‐8) and Cox‐2 in primary human rheumatoid arthritis synovial fibroblasts (RASFs). EGCG and EGC inhibited IL‐6, IL‐8, and MMP‐2 production and selectively inhibited Cox‐2 expression. EC did not exhibit any inhibitory effects. When we looked at the expression of key signaling proteins in the IL‐1&bgr; signaling pathway, we found all the tested catechins could inhibit TAK‐1 activity. Therefore, the consumption of green tea offers an overall anti‐inflammatory effect. Molecular docking analysis confirms that EGCG, EGC, and EC all occupy the active site of the TAK1 kinase domain. However, EGCG occupies the majority of the TAK1 active site. In addition to TAK1 inhibition, EGCG can also inhibit P38 and nuclear NF‐&kgr;B expression whereas EC and EGC were not effective inhibitors. Our findings suggest one of the main health benefits associated with the consumption of green tea are due to the activity of EGCG and EGC which are both present at higher amounts. Although EGCG is the most effective catechin at inhibiting downstream inflammatory signaling, its effectiveness could be hindered by the presence of EC. Therefore, varying EC content in green tea may reduce the anti‐inflammatory effects of other potential catechins in green tea. Graphical abstract Figure. No caption available. HighlightsCatechins EC and EGC have anti‐inflammatory properties in synovial fibroblasts.EGCG is more effective at inhibiting downstream IL‐1&bgr; signaling than EGC and EC.EC content may modify green tea's anti‐inflammatory effect by competing with EGCG.

Keywords: anti inflammatory; green tea; bgr signaling; tea; egcg egc; synovial fibroblasts

Journal Title: Toxicology and Applied Pharmacology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.