Hesperetin (HSP) has excellent biological activities with poor water solubility which limits its clinical development. In this study, we successfully prepared a novel, self-assembled micelle based on Rebaudioside A (RA)… Click to show full abstract
Hesperetin (HSP) has excellent biological activities with poor water solubility which limits its clinical development. In this study, we successfully prepared a novel, self-assembled micelle based on Rebaudioside A (RA) for oral delivery of HSP with improved bioavailability and therapeutic effects. We found that RA and HSP could be formylated into nanomicelles with particle sizes of 4.541 nm ± 0.048 nm. HSP was readily encapsulated into RA micelles and this improved its water solubility (to 12.74 mg/mL ± 0.28 mg/mL). The MTT results showed that RA-HSP enhanced the cytotoxicity, the clonal formation inhibitory activity, and cell migration inhibitory activity of HSP in human breast cancer MDA-MB-231 cells. The mechanism results showed that RA-HSP induced cell apoptosis by inducing the production of reactive oxygen species (ROS), destroying the mitochondrial membrane potential (MMP), and inhibiting the PI3K/Akt signaling pathway. Moreover, RA-HSP enhanced the anticancer activity, increased the oral bioavailability and tissue distribution of HSP in vivo. Moreover, the mechanism studies in vivo found that HSP inhibited PI3K/Akt signaling pathway with low side effects. These findings indicate that RA micelle formulations have great potential in oral drug delivery systems for the delivery of hydrophobic drugs.
               
Click one of the above tabs to view related content.