LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity.

Photo from wikipedia

A heterogeneous pH buffer based on a colloidal emulsion containing ion-exchanger and lipophilic base is described that can be integrated into hydrogels without affecting their ion-exchange properties. Each sphere works… Click to show full abstract

A heterogeneous pH buffer based on a colloidal emulsion containing ion-exchanger and lipophilic base is described that can be integrated into hydrogels without affecting their ion-exchange properties. Each sphere works on the basis of reversible ion-exchange of hydrogen ions with solution cations, acting as a pH buffer while staying removed from solution in the nonpolar core of the spheres. The ion-exchange mechanism is supported by titration experiments in aqueous emulsion, showing that the nature and concentration of the exchanging solution cations influences the buffer action, with increasing lipophilicity moving the equilibrium to lower pH values. Agarose gels with entrapped pH buffer emulsions and mounted in a transport cell are shown by zero current potentiometry to exhibit negligible permselective properties above an ionic strength of 1mM, a behavior no different from unmodified agarose, with an observed ion-exchanger concentration of 7mM in dry agarose. This suggests that such pH buffers do not give rise to substantial ion-exchange properties of the gel material. In a first attempt to control the pH in the vicinity of an electrode surface by this approach, the emulsion was entrapped in an agarose gel in direct contact with a pH electrode, demonstrating the ability to buffer such gel films.

Keywords: ion exchange; hydrogel containing; ion; agarose hydrogel; buffer

Journal Title: Talanta
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.