LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrafast 2,7-Naphthyridine-Based fluorescent probe for detection of thiophenol with a remarkable Stokes shift and its application In vitro and in vivo.

Photo by markuswinkler from unsplash

2,7-Naphthyridine derivatives were developed as fluorophores for the first time to design two fluorescence probes, AND-DNP and ND-DNP, which can be applied for detecting thiophenol in aqueous media. Comparing with… Click to show full abstract

2,7-Naphthyridine derivatives were developed as fluorophores for the first time to design two fluorescence probes, AND-DNP and ND-DNP, which can be applied for detecting thiophenol in aqueous media. Comparing with ND-DNP, AND-DNP showed more favorable properties such as lower background, larger Stokes shift, and higher fluorescence quantum yield for detecting thiophenol. Moreover, the experimental results were verified by theoretical calculations. Hence, AND-DNP was selected as the superior fluorescence probe to detect thiophenol because of its high sensitivity and selectivity. Based on the experimental results, AND-DNP showed a remarkably larger Stokes shift (225 nm), faster response speed (30 s) and higher fluorescence enhancement (240-fold) than most other fluorescent probes for thiophenol reported in the literature. For an extended application, AND-DNP was applied to detect thiophenol quantitatively in real water samples. Meanwhile, AND-DNP also detected thiophenol via red emission in living A549 cells and zebrafish. All these results proved AND-DNP's potential value as an accurate probe for imaging thiophenol in different environments.

Keywords: dnp; application; stokes shift; thiophenol; fluorescence; probe

Journal Title: Talanta
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.