LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile preparation of reduced graphene oxide/ZnFe2O4 nanocomposite as magnetic sorbents for enrichment of estrogens.

Photo by ofisia from unsplash

Reduced graphene oxide/ZnFe2O4 (rGO/ZnFe2O4) nanocomposite was facile prepared and applied as magnetic sorbent for the extraction of estrogens including 17β-estradiol, 17α-estradiol, estrone and hexestrol from water, soil, and fish samples… Click to show full abstract

Reduced graphene oxide/ZnFe2O4 (rGO/ZnFe2O4) nanocomposite was facile prepared and applied as magnetic sorbent for the extraction of estrogens including 17β-estradiol, 17α-estradiol, estrone and hexestrol from water, soil, and fish samples prior to HPLC analysis. The rGO/ZnFe2O4 nanocomposite was characterized by scanning electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction, and vibrating sample magnetometer. The experimental parameters affecting the efficiency of magnetic solid-phase extraction (MSPE) including the amount of material, extraction time, pH, temperature, desorption solvents, desorption time, and desorption solvent volume were investigated respectively. With the developed method, good linearity was observed in the range of 0.05-500 ng/mL with the correlation coefficients (R2) between 0.9978 and 0.9993. The limits of detection (S/N = 3) and limits of quantification (S/N = 10) were achieved at 0.01-0.02 ng/mL and 0.05 ng/mL, respectively. The enrichment factors were calculated as the range of 241-288. Using rGO/ZnFe2O4 nanocomposite as the sorbent, the developed MSPE followed by HPLC analysis, was applied to analysis of estrogens in river water, soil and fish samples. The method has the potential application in the extraction and preconcentration ultra trace compounds in complex matrices, such as environmental and biological samples.

Keywords: graphene oxide; extraction; oxide znfe2o4; znfe2o4 nanocomposite; znfe2o4; reduced graphene

Journal Title: Talanta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.