Accurate and early diagnosis of zearalenone (ZEN) is particularly significant to the food safety. Herein, we propose an ionic liquid assisted self-assembly molecular imprinting strategy for ZEN based on ionic… Click to show full abstract
Accurate and early diagnosis of zearalenone (ZEN) is particularly significant to the food safety. Herein, we propose an ionic liquid assisted self-assembly molecular imprinting strategy for ZEN based on ionic liquid functionalized boron-doped ordered mesoporous carbon -gold nanoparticles composite (BOMC-IL-Au NPs). During the composite synthesis, increased well-dispersed and uniform Au NPs are deposited on the surface of IL modified BOMC, due to the strong electrostatic interaction between AuCl4- and positively charged IL. For molecular imprinting, the BOMC-IL-Au NPs/GCE is immersed into p-aminothiophenol (p-ATP) solution and template solution in turn. Thus, the mercapto group contained p-ATP self-assembles on the Au NPs. Subsequently, the template molecules self-assemble onto the composite to form dense template layer, because of the hydrophobic interaction, π-π and hydrogen bond between template and IL/or p-ATP. After electropolymerization, the template layer is embedded into the p-ATP polymer membrane and produces lots of imprinting sites. Hence, the obtained sensor exhibits high sensitivity and selectivity. Under the optimal conditions, zearalenone can be quantified from 5 × 10-4 to 1 ng mL-1 with the low detection limit of 1 × 10-4 ng mL-1, by using [Fe(CN)6]3-/4- probe and square wave voltammetry. This strategy can also be employed to construct sensors for the detection of other substances.
               
Click one of the above tabs to view related content.