LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DSN/TdT recycling digestion based cyclic amplification strategy for microRNA assay.

Photo by homajob from unsplash

Sensitive and specific detection of microRNAs (miRNAs) is of great significance for early cancer diagnosis. Here we report a simple and sensitive fluorescence signal amplification strategy that based on DSN/TdT… Click to show full abstract

Sensitive and specific detection of microRNAs (miRNAs) is of great significance for early cancer diagnosis. Here we report a simple and sensitive fluorescence signal amplification strategy that based on DSN/TdT recycling digestion for miRNA detection. DSN initiates DNA digestion on 3'-phosphate-primer/miRNA heteroduplex which causes miRNA recycle. The digested DNA strands with 3'-OH ends enable TdT to synthesize a polydeoxyguanylic tails on the 3'-end. The DNAs with polydeoxyguanylic tails are converted to double-stranded-DNA prior to initiation of DSN/TdT recycling digestion. With the cooperation of TdT and DSN, a new round of digestion and extension is triggered, leading to massive fluorophores separating and signal amplification. The amplification strategy produces large amounts of 3'-OH probes that can be used directly for dsDNA enrichment and DSN digestion. Moreover, both DSN digestion and TdT extension are sequence-independent reaction without the need of complex sequences design. In addition, this strategy is utilized to analyze miRNA samples from MCF-7 cell lysates and Cu (II) ion samples, indicating its potential application in actual sample analysis. The method shows a promising analytical platform for DNA nicking-related studies and tumor biomarkers measuring in clinical diagnostics.

Keywords: dsn tdt; tdt; amplification strategy; digestion

Journal Title: Talanta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.