LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Droplet array for open-channel high-throughput SERS biosensing.

Photo from wikipedia

Open-channel and high throughput are two important aspects of clinical diagnosis, correlation biochemical analysis, cell culture techniques and food safety. Here, we propose the mini-pillar based array for open-channel and… Click to show full abstract

Open-channel and high throughput are two important aspects of clinical diagnosis, correlation biochemical analysis, cell culture techniques and food safety. Here, we propose the mini-pillar based array for open-channel and high-throughput SERS detection of miRNA. The polydimethylsiloxane (PDMS) mini-pillars are used as a high-throughput platform, which have good anchoring and aggregation effects on microdroplets, greatly reducing the amount of analytical solution and facilitate the homogeneous sample distribution after evaporation. The deposited gold nanorods (Au NRs) on the pillars with optimized diameter served as SERS-active substrate, can greatly improve the sensitivity of SERS signal compared to other planar substrates. On the open-channel biological chip, sensitive, simultaneous, and specific detection of breast cancer marker miRNA-1246 can be performed. In this mini-pillar array SERS system, the limit of detection (LOD) is 10-12 M. The mini-pillar array shows enormous potential for open channel, high-throughput biomolecular detection, providing an opportunity for biomedical point-of-care testing (POCT) and drug screening.

Keywords: channel high; open channel; array; high throughput

Journal Title: Talanta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.