LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dialysis of one sample drop on-line connected with electrophoresis in short capillary.

Photo from wikipedia

An analytical apparatus is described, based on on-line connection of electrophoresis in a short capillary with a dialysis unit enabling dialysis in micro-litre sample volumes into submicro-litre volumes of an… Click to show full abstract

An analytical apparatus is described, based on on-line connection of electrophoresis in a short capillary with a dialysis unit enabling dialysis in micro-litre sample volumes into submicro-litre volumes of an acceptor solution in a dialysing fibre. After a defined dialysis time, the dialysate from the dialysing fibre is injected into a separation capillary through an air-assisted flow-gating interface cast from PDMS. In the flow-gating injection space, the exit from the delivery capillary bringing the dialysate is placed directly opposite the entrance into the separation capillary at a distance of 380 μm. In order to enable injection of a very small volume of dialysate, the background electrolyte is forced out of the injection space with air before the injection, so that a drop of dialysate with a volume of about 0.1 μL is formed between the exit from the delivery and the entrance into the separation capillary; the dialysate is injected hydrodynamically from this dialysate drop. Then the injection space is filled with the background electrolyte and the separation is commenced. The basic properties of the apparatus were tested on model mixtures of inorganic cations (K+, Ba2+ and Na+) and organic molecules (creatinine, histidine and arginine). The applicability to real samples was tested on the determination of basic amino acids (histidine, lysine and arginine) in a blood serum sample.

Keywords: sample; drop; short capillary; electrophoresis short; dialysate; dialysis

Journal Title: Talanta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.