LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topochemical assembly of levodopa nanoparticles network as a high-performance biosensing platform coupling with π-π stacking and electrostatic repulsion interactions.

Photo by sashbo70 from unsplash

Topochemical assembly carbon materials with unique structure rarely investigated and reported. Herein, we demonstrate the feasibility of using topochemical assembly levodopa nanoparticles with dendritic structure (LNDS) network as a new… Click to show full abstract

Topochemical assembly carbon materials with unique structure rarely investigated and reported. Herein, we demonstrate the feasibility of using topochemical assembly levodopa nanoparticles with dendritic structure (LNDS) network as a new high-performance biosensing platform based on noncovalent functionalization of LNDS with a fluorescent oligonucleotide. The proposed platform is dependent on the competition of π-π stacking and electrostatic repulsion interactions between LNDS and fluorescent oligonucleotide. The obtained LNDS with 96.1% quenching efficiency is synthesized by using levodopa as the single precursor by natural oxidation or microwave irradiation. The constructed platform can be used for simple and efficient probing single-nucleotide polymorphisms (SNPs) and cDNA by fluorescence restoration with a highly sensitivity and selectivity, remarkably superior to those based on graphenes. Additionally, an aptasensor is further constructed for small molecule ATP detention in serum with a low detection limit of 4 μM. To the best of our knowledge, this is the first attempt to use LNDS to design a biosensing platform, and therefore opens possibilities for new types of nanoparticle-based molecule approaches, and sequencing technologies.

Keywords: levodopa nanoparticles; assembly levodopa; platform; high performance; topochemical assembly; biosensing platform

Journal Title: Talanta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.