LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid and specific DNA detection by magnetic field-enhanced agglutination assay.

Photo by nci from unsplash

The detection of DNA molecules by agglutination assays has suffered from a lack of specificity. The specificity can be improved by introducing a hybridization step with a specific probe. We… Click to show full abstract

The detection of DNA molecules by agglutination assays has suffered from a lack of specificity. The specificity can be improved by introducing a hybridization step with a specific probe. We developed a setting that captured biotinylated DNA targets between magnetic nanoparticles (MNPs) grafted with tetrathiolated probes and anti-biotin antibodies. The agglutination assay was enhanced using a series of magnetization cycles. This setting allowed to successfully detect a synthetic single stranded DNA with a sensitivity as low as 9 pM. We next adapted this setting to the detection of PCR products. We first developed an asymmetric pan-flavivirus amplification. Then, we demonstrated its ability to detect dengue virus with a limit of detection of 100 TCID50/mL. This magnetic field-enhanced agglutination assay is an endpoint readout, which benefits from the advantages of using nanoparticles that result in particular from a very reduced duration of the test; in our case it lasts less than 5 min. This approach provides a solution to develop new generation platforms for molecular diagnostics.

Keywords: enhanced agglutination; detection; dna; agglutination assay; magnetic field; field enhanced

Journal Title: Talanta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.