LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploration of synthesizing fluorescent silicon nanoparticles and label-free detection of sulfadiazine sodium.

Photo by miguelherc96 from unsplash

Herein, silica nanoparticles (SiNPs) with blue-fluorescence have been originally synthesized through one facile hydrothermal way, and this kind of SiNPs were water-soluble with the relative quantum yield of around 6%.… Click to show full abstract

Herein, silica nanoparticles (SiNPs) with blue-fluorescence have been originally synthesized through one facile hydrothermal way, and this kind of SiNPs were water-soluble with the relative quantum yield of around 6%. Meanwhile, N-(triethoxysilylpropyl) urea severed as the silica source, while potassium hydrogen phthalate as the doping reagent. Also, SiNPs exhibited the acceptable stability and excitation-dependent fluorescence property. Moreover, their surfaces of the obtained SiNPs were equipped with multiple functional groups including -Si-O-Si-, -Si-H, -COOH, -NH2 and -OH. Importantly, the fluorescence of SiNPs could be specifically quenched by sulfadiazine sodium (SD-Na), thus achieving a label-free detection of SD-Na, which displayed a wide linear response in the range of 0.8 μM-800 μM with a detection limit of 1.02 μM. Additionally, we explored the mechanism of SiNPs sensing SD-Na on the basis of aggregation-induced quenching. To be specific, the particle size of SiNPs increased from 29.9 nm to 203.7 nm induced by the electrostatic interactions between SiNPs and SD-Na, which was further confirmed by high resolution transmission electron microscopy. Consequently, the proposed strategy here broadened the ways of assaying sulfadiazine sodium.

Keywords: sinps; free detection; sodium; label free; sulfadiazine sodium

Journal Title: Talanta
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.